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Abstract
Alzheimer’s detection is a challenging task for physicians. There are subtle differences in
the bio-marker characteristics of Alzheimers and mild cognitive impairment patients which
is very difficult to detect by a physician. Machine learning approaches are widely used for
predicting a patient as having either Alzheimer’s or mild cognitive impairment. For devel-
oping models that distinguish between Alzheimer’s and mild cognitive impairment patients,
the researchers used a dynamic ensemble of classifier selection algorithms. These algo-
rithms perform voting on ensemble classifiers without considering preferential choices of
the Alzheimer’s and mild cognitive impairment categories. Thus, this paper applies a modi-
fied Borda count voting weightage method instead of the majority voting and Borda voting
for classifying Alzheimer’s, healthy control, and mild cognitive impairment patients classi-
fication on dynamic ensemble of classifier selection algorithms. Six dynamic ensemble of
classifier selection algorithms are used in the study. Ten pools of classifiers including random
forest, bagged decision tree, extra trees, Adaboost, rotation forest, decision tree, bagged sup-
port vector machine, bagged multilayer perceptrons, majority voting ensemble, and stacking
classifier are used as classifier input for the dynamic ensemble of classifiers. The results sug-
gest that the application of the proposed method can improve the classification performance
for Alzheimer’s, mild cognitive impairment, and healthy patients when compared to the tra-
ditional voting methods after applying most of the dynamic ensemble of classifier selection
algorithms used in the study. The application of a modified Borda count voting method on the
dynamic ensemble of classifiers resulted in an increase of balanced classification accuracy
ranging from 1 to 9%. The highest balanced classification accuracy of 86% is reported when
random forest is applied to meta-learning for dynamic ensemble selection algorithms with
the proposed voting method. It is also noted that there is an maximum increase in balanced
classification accuracy of 9% is observed when applying rotation forest on K-nearest out-
put profiles classifier using the proposed modified Borda count voting method. Thus, the
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increase in the balanced classification accuracy after applying the proposed modified Borda
count voting method can make a positive impact on high-stakes healthcare applications like
Alzheimer’s detection.

Keywords Machine learning · Dynamic ensemble of classifiers · Borda

1 Introduction

Machine learning (ML) is widely used in the health care fields such as disease prediction,
epidemic prediction, and hospital scheduling tasks [1–3]. The recent advances in the field of
ML have made possible the greatest achievements in health care such as the prediction of the
outbreak of an epidemic using social media data [4]. It is also possible to detect the presence
of severe diseases such as Alzheimer’s, Parkinson’s, and various types of Cancers using the
Big Data [4, 5]. The innovation of Big Data accelerated the field of health care analytics. The
crucial tasks in the medical field has got more insights through the advent of wide variety of
health care data [6, 7].

According to the World Health Organization (WHO), Mental Health Gap Action Pro-
gramme 2008, Alzheimer’s disease (AD) is considered to be one of the most dangerous and
attention-seekingmental health illnesses in theworld [7]. Lifestyle, aging, and genetic factors
are responsible for the increasing progression of AD [8]. Moreover, the total number of AD
patients are also estimated to triple by 2050 [9]. Among all Dementia, AD is considered to
be one of the most severe and dangerous dementia which is most prevalent among the aged
population around the globe [9]. The severity of Alzheimer’s is such that the affected person
is unable to remember and recall even the daily day-to-day activities of an individual. This
makes the life of an Alzheimer’s patient even more miserable [7, 10, 11].

There are no perfect medications currently available to cure AD disease progression.
However, the rate of progression of the AD could be reduced using certain medications
[12, 13]. This is where the advanced prediction of Alzheimer’s is useful. If AD patients are
known in advance, it is possible to provide suitable types ofmedications to future AD patients
considering its severity. Hence, it is possible to reduce the progression level of AD that will
affect the cognitive memory of an individual [14–16]. Mild cognitive impairment (MCI) is
another stage of cognitive impairment where the affected individual can still able to recall
basic day-to-day activities except the historical facts and figures. This is considered to be
as less harm than the severe AD stage [17]. The benefits of the advanced prediction of AD
are 1. It is possible to provide only the required medications to the patients depending upon
the type of dementia, 2. Unnecessary health care costs can be avoided by a well-designed
medication strategy. Physicians can manage and develop a good personalized medication
plan for the patient depending upon their dementia level. It will help the family members
also in maintaining a proper care for the patient [17, 18].

People with severe dementia such as AD face problems for recalling past events, remem-
bering day-to-day activities, understanding the family relationships. The overall cognitive
abilities of an individual such as understanding the mathematical logic, solving complex
problems are reduced during AD progression. This is a dangerous situation where the indi-
vidual require the assistance of a person [19]. Hence, the Alzheimer’s patient faces extreme
difficulty for doing common tasks that can be easily managed by a common person [19, 20].
The severity of cognitive impairment is slightly less for MCI patients. The MCI individuals
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can still manage to do daily day-to-day assistance without the assistance of external person.
However, they might forget the historical facts and figures [19, 20].

This paper explores the application of various dynamic ensemble algorithms with a novel
weighting approachon theBorda votingmethod for the classification ofAD,MCI, andhealthy
control (HC) patients. Unlike the typical dynamic ensemble classifiers with the majority
voting technique for the classification of AD, MCI, and HC patients, the proposed ensemble
classifier takes the final classification decision on the basis of preferential Borda voting
method with a modified weighting mechanism. This paper is organized as follows: Section
2 contains the related works, Sect. 3 contains the materials and methods, Sect. 4 contains the
results and discussions, and Sect. 5 contains the conclusion.

2 Related works

The application of several machine learning (ML) algorithms is effectively used in health
care applications for various disease prediction tasks [21–24, 26]. Health care datasets are
very complex in nature and require proper data management mechanisms. Data duplication
is a major challenge and issue in such datasets which can be resolved using incremental
clustering techniques [25]. Thus, it is difficult for a doctor or physician to find out the actual
disease diagnosis status for the early prediction of diseases using relevant features from such
large complex datasets [21, 26, 27]. Consequently, ML algorithms are widely used for the
advanced prediction of diseases. As the disease datasets are very complex in nature, the
researchers are relying on the advanced ensemble models for better predictions [28]. This
is most commonly seen among ML researchers for the prediction of neuro-degenerative
diseases especially Alzheimer’s because the exact reason for the AD is not known among the
clinical practitioners. Hence, clinical experts depend on the advanced ML techniques with
ensemble modeling for the prediction of AD [28].

Researchers used multimodal data that consist of magnetic resonance imaging (MRI),
positron emission tomography (PET), cognitive tests for the early detection of Alzheimer’s
[29–32]. A convolutional neural network (CNN) is employed on the MRI dataset for the
detection of AD disease by the researchers in [29]. Further, an unsupervised CNN is also used
by the researchers for distinguishing MCI and AD patients [30]. In another study conducted
by the researchers in [31], cost-effective simple ML algorithms such as SVM, KNN, and LR
are used for the detection of AD using medication and cognitive data. Multimodal data with
longitudinal time-series features are also used for distinguishing MCI and AD patients. They
used SVM as the classifier for the final classification of MCI and AD [32]. Deep learning
based neural network architectures are widely used by the researchers for feature extraction
from neuroimages of the brain [33]. Residual neural networks are utilized on the Central
Lobe regions of the brain for identifying AD patients using residual neural networks [34].

Ensemble models are widely used for the detection of AD, MCI, and HC patients [35–
41]. An ensemble deep learning model consisting of convolutional autoencoders (CAE)
is used by the researchers for the classification of AD, MCI, and HC patients [35, 37]. An
ensemblemodel consists of random forest (RF) and extreme gradient boosting (XGBoosting)
algorithm is used for the detection of AD, HC patients [36]. Researchers also investigated
the effectiveness of a patch-based ensemble of convolutional neural network (CNN) for the
detection of AD andMCI patients [39]. A combination of several deep CNNs are used for the
early detection of AD patients [38]. In another similar study, the researchers developed an
ensemble multistage classifier for the prediction of AD,MCI, and HC. The model consists of
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Naive Bayes (NB), SVM, and KNN classifiers [40]. Further, an ensemble of SVM classifiers
are applied on MRI and psychological test data for the prediction of MCI and AD patients
[41].

The typical ensemble algorithms are focused on the prediction for test data after consider-
ing every data in the training set. This is the reason why researchers used dynamic ensemble
of classifier selection (DES) algorithms for the classification of AD, MCI, and HC patients
[42]. Performance analysis of 6 DES algorithms is performed by the researchers in [42]. They
found out that the application of most of the DES algorithms is capable of increasing the
classification accuracy for AD, MCI, and HC classification [42]. It is observed from the lit-
erature that the previous studies involving dynamic ensemble models used a non-preferential
voting scheme for the final classification of AD, MCI, and HC patients [35–41].

Two drawbacks are observed from the literature. They are:

• Lack of application of novel ensemble algorithms for the detection of AD, MCI, and HC.
• Lack of application of novel preferential voting mechanisms in the previous ensemble

models used for distinguishing AD, MCI, and HC patients.

This study investigate the application of various dynamic ensemble classifier algorithms
along with a novel and modified Borda count preferential voting mechanism for the detection
ofAD,MCI, andHCpatients. Theweightingmethod of the Borda count approach ismodified
using the concept of Lift.

3 Materials andmethods

This section contains the detailed information of the subjects and datasets used in the study.

3.1 Dataset description

This study used the standard dataset, namely Alzheimer’s Disease Neuro-imaging Initiative-
TADPOLE (ADNI-TADPOLE) dataset for the study.

ADNI-TADPOLE dataset
ADNI-TADPOLE is a challenge initiative taken by the researchers of Alzheimer’s dis-

ease neuroimaging initiative (ADNI) for finding out the Alzheimer’s disease progressors at
an early stage of their life [43–45]. The physicians are keen to find out the AD progressors
on the baseline visit of an individual. The ADNI-TADPOLE dataset unites the researchers
around the globe who are working on clinical, ML, statistics data for the early prediction of
Alzheimer’s disease. The aim of this dataset is to find out the future AD progressors using
multimodal data that consist ofmagnetic resonance imaging (MRI), positron emission tomog-
raphy (PET), functional magnetic resonance imaging (fMRI), cerebro-spinal fluid (CSF), and
other cognitive test data using advancedML techniques [44, 45]. There are over 1737 patient
data collected from the various visits of patients [43–45]. Table 1 contains the description
about the ADNI-TADPOLE dataset.

Following are the features used for our study from the ADNI-TADPOLE dataset:

• MRI features such as Hippocampus volume, Ventricles volume, Entorhinal volume,
Fusiform volume, andMiddle Temporal Gyrus Volume are extracted. Further, the area of
the 19 Region of Interests (ROI) as extracted from the FreeSurfer Software such as Right
Pallidum, Right Paracentral, Right Parahippocampal, Right Pars Opercularis, Right Pars
Orbitalis, Right Pars Triangularis, Right Pericalcarine, Right Postcentral, Right Poste-
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Table 1 Age statistic of the
samples in the ADNI-TADPOLE
dataset

Statistic HC AD MCI

Mean 72.90 73.19 71.9

Median 89 88 90.3

Standard Deviation 59 55 55.6

rior Cingulate, Right Precentral, Right Precuneus, Right Putamen, Right Rostral Anterior
Cingulate, Right Rostral Middle Frontal, Right Superior Frontal, Right Supramarginal,
Right Temporal Pole, Right Thalamus, Right Transverse Temporal are selected for the
study [44, 45].

• PET features such as Fluorodeoxyglucose (FDG), and AV-45 Florbetapir measurements
are used as features. Further, the cerebral metabolic rate for glucose (CMRgL) of 32
ROIs as extracted by the FreeSurfer software is also used as the feature. The 32 ROIs
are: Hippocampus Right, Frontal Superior Gyrus, Middle Frontal Gyrus, Para Hip-
pocampal, Fusiform, Middle Occipital Lobe, Angular Lobe, Inferior Parietal Lobule,
Supramarginal Lobe, Temporal Middle Lobe, Precuneus Lobe, Cingulum Posterior, Lin-
gual Gyrus, FrontalMiddle Lobe, Frontal Inferior Lobe, Superior Parietal Lobule, Insular
Lobe, CingulumAnterior, CingulumMiddle, Temporal Superior Lobe, Temporal Inferior
Lobe, Frontal Superior Lobe, Frontal Middle Lobe, Cingulum Posterior, Frontal Supe-
rior Medial Lobe, Middle Frontal Gyrus Orbital Part, Angular Gyrus, Superior Temporal
Gyrus, Rectus Gyrus, Temporal Superior, Parietal Superior Lobe, and Supramarginal
Gyrus [44, 45].

• Cognitive test features such as Mini-Mental State Examination (MMSE), Clinical
Dementia Rating Scale Box (CDRSB), Alzheimer’s Disease Assessment Scale 11
(ADAS11), Alzheimer’s Disease Assessment Scale 13 (ADAS13), Functional Activities
Questionnaire (FAQ), Montreal Cognitive Assessment Test scores are used as features
for the study [44, 45].

• Cerebro spinal fluid (CSF) biomarkers such as Abeta Amyloid Peptides and Tau Protein
data are used as features for the study [44, 45].

• Demographic data such as age, sex, and education are also used for the study [44, 45].

3.2 Methodology

This paper used an ML approach for the classification of AD, MCI, HC classification. The
methodology used for the ML design in the sequential order is as follows:

• Data pre-processing The raw data consist of missing data that are handled for further
processing.

• Feature selection The most important and relevant features are selected for the study
using already existing feature selection techniques such as least absolute shrinkage and
selection operator (LASSO), extreme gradient boosting (XGBoost) methods. These two
methods are implemented separately in the study.

• Data transformation The feature values are scaled into a particular range for easy
execution and processing for ML algorithms.

• Data segregation The entire dataset is divided into 80% of training-validation and 20%
of the unseen test set. TheMLmodels are trained and validated on the training-validation
set and tested separately on the unseen test data.

123



K. P. Muhammed Niyas, T. Paramasivan

Fig. 1 Overall workflow of the study

• Predictive modeling A stratified 10-fold cross-validation is performed on the training-
validation set. The hyper-parameters for the experiments are fine-tuned during the cross-
validation stage. Finally, the trainedMLmodel is executed on the unseen test data. Figure
1 contains the execution of the proposed methodology.

3.3 Data pre-processing

Data pre-processing techniques are vital in identifying the noises, outliers, and inconsistencies
of the data. The occurrence of suchmistakes often leads to bad training by theML algorithms.
Therefore, it is necessary to resolve the problems associated with the unprocessed data before
starting the execution ofML algorithms [63]. The experiments are also conducted for missing
values in the dataset with a median imputation strategy. The median imputation technique is
a widely used technique for imbalanced datasets [63].

3.3.1 Feature selection

Feature selection is the key to finding the most relevant features of the dataset. The training
ofML algorithms can be increased by using only the informative features [48]. The advanced
feature selection techniques that take into consideration the multivariate feature interaction
such as LASSO and XGBoost methods are used separately for finding the most important
features for the study [48].
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LASSO
LASSO is used for finding out the features based on their LASSO regression coefficient
value. Initially, the LASSO regression is applied to the entire dataset. Then, the features
whose LASSO regression is different from 0 is selected for the final prediction task [49].
The main idea behind the LASSO regression is to minimize the cost function by finding an
optimal value for the LASSO coefficients of the features [49].
XGBOOST
XGBOOST technique uses a boosting ensemble where the features are selected sequentially
one by one based on their importance using boosting technique [50, 51]. The boosting tech-
nique will improve the classification performance for the wrongly unclassified samples in
each iteration. The XGBOOST technique is based on the principle of the gradient boosting
trees [50, 51]. This method selects those features that perform well in each constructed DT
in the consequent iterations. The subset of features that are correctly classified in all the DTs
are taken as the final features using the XGBoost method [50, 51].

3.3.2 Data transformation

All the values that are considered for the study are normalized within a range of values using
Z-score. Every feature value is scaled to a value between mean and standard deviation of the
respective features [52, 53]. The benefits of this approach are that the values of a feature are
scaled to a particular range. Hence, the execution and operation of the ML models become
easier. Equation1 contains the formula for data transformation.

scaled value = ( f eature value − mean( f eatures))/standard deviation( f eatures) (1)

where scaled value is the new value after scaling, mean of features is the mean of respective
feature, and standard deviation is the standard deviation of respective features.

3.4 Data segregation

The data after pre-processing are split into training, validation, and testing stages. The primary
aim of the splitting is to train using some portion of the data, validate using the other divided
portion of the data. Then, the resultant model is tested with unseen test data. Thus, the issues
related with overfitting is handled after data segregation [54, 55].

A stratified 10-fold cross-validation is performed on the 80%patient’s data that are allotted
for training-validation. As our dataset is imbalanced, the stratified 10-fold cross-validation
is used for our study. Moreover, it is observed from the literature that the stratified 10-fold
cross-validations are mostly used technique for imbalanced health datasets also motivated us
to use this strategy for our evaluation purpose [56, 57]. The halving grid search is used as the
hyper-parameter technique for the cross-validation techniques on the training-validation set.
The remaining 20% of the data are used for evaluating the models on the unseen test data.

Figure 2 illustrates the data segregation performed for the study.

3.5 Predictive modeling

This section contains detailed information on the ML models used in our study. The exper-
iments are conducted on ensemble classifiers. The proposed modified novel Borda count is
applied to the following ensemble classifiers:
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Fig. 2 Data segregation used in
the study

3.5.1 Ensemble classifiers

Ensemble models makes the prediction on a test data after considering the decisions made
by all the pool of classifiers. It is one of the efficient way of bringing diversity of information
on to a machine learning classifier while making the classification decisions. The following
ensemble classifiers are used in the study:

• DES algorithms
DES algorithms find out an optimal set of ensemble classifiers for each test data dynam-
ically based on its predictive ability on the region of competence [58–61]. A region of
competence is the nearest neighbor of the respective test data. Thus, DES algorithms
dynamically find a set of classifiers for each test data based on the ensemble of the clas-
sifier’s performance in the region of competence. Figure illustrates the framework of a
DES algorithm [58–61].
K-nearest oracle-eliminate (KNORAE)
KNORAE selects all those classifiers that correctly predict every training data in the
region of competence. If there are no such classifiers, then the classifiers with the best
performance will be assigned to the test data [58–61].
K-nearest oracle union (KNORAU)
KNOARU selects all those classifiers that correctly predict at least one of the training data
in the region of competence. If there are no such classifiers, then none of the classifiers
are considered for the final decision-making process [58–61].
K-nearest-output profiles (KNOP)
KNOP select those classifiers that select at least one sample in the region of competence.
Unlike KNORAU, this method calculates the region of competence using the decision
of the base classifier [58, 59, 62].
Dynamic ensemble selection K-nearest neighbor (DES-KNN)DES-KNNmethod uti-
lizes both the accuracy and diversity of the base classifierswhilemaking the final decision.
Initially, the most ‘n’ accurate classifiers from the region of competence is calculated,
then the most ‘m’ diverse classifiers from these accurate classifiers are shortlisted for
making the final classification for the test data [58–61].
Dynamic ensemble selection performance (DESP) DESP method selects those classi-
fiers from the base classifiers whose performance is higher than a random classifier. An
ensemble set of classifiers from the base classifiers whose performance is higher than the
random classifier is assigned for the new test data [58–61].
Dynamic ensemble selection multi-imbalanced (DES-MI) DES-MI method uses a
weight-based approach for controlling the dissemblance of the training set data in the
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Fig. 3 Overall framework of a DES algorithm

region of competence. Then, the classifiers that predict every training data in the region
of competence is selected after handling the imbalanced data in the region of competence
[58–61].
Meta-learning for dynamic ensemble selection (META-DES) META-DES method
finds out themeta-features associatedwith the base classifiers from the pool of classifiers.
The meta-features are extracted for each classifier from the region of competence like
the overall local accuracy, the posterior probability for each label, classifier’s confidence
which is the perpendicular distance between the input sample and decision boundary of
the classifier [58–61].
DES Kullback–Leibler divergence
This method calculates the competence of a classifier after calculating the Kullback–
Leibler divergence between the output produced by the vector of the class produced by
the base classifier and a random classifier. The classifiers whose competence is higher
than the random classifier are selected for the given test data [65].

• Stacked classifier A stacked classifier is the one where the individual classifications of
all the classifiers are taken as the input for themeta-classifier. Themeta-classifier consider
the individual classifications as the feature inputs and the inputs are fed as features for
final classification task [66, 67].

Figure 3 illustrates the overall framework of a DES algorithm.

3.5.2 Proposedmodified novel Borda method

This study proposes a novel modified Borda count method for predicting the final classifica-
tion of AD, MCI, and HC patients while using ensemble classifiers. The detailed explanation
of the proposed modified novel Borda method is as follows:
Modified weighted Borda count

The typical Borda count method uses preferential voting in which the voters select can-
didates based on their quantified preferences. The similar Borda count concept is widely
used by the researchers in the ensemble voting classifiers [69, 70]. The most commonly
used majority voting classifiers suffer from the drawback of selecting the label on the basis
of majority decisions [69–72]. However, the simple Borda count voting method considers
numerical preferences for every label while making the final classification decision.

The overall preferences of every classifier are added together and the label with the highest
preference is selected. The weighted preferences are found using the posterior probabilities
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for every label and the respective label-wise preferences are summed up for each classifier.
Then, the label with the highest preferences are selected. This study proposes a modified
Borda weighting mechanism based on the concept of lift which can improve the drawback
of the already existing Borda count [69–71].

The pseudocode for typical Borda count is given in Algorithm 1:
Borda count weighting mechanism using lift Lift is a probability concept used in market
basket analysis for finding the frequent item sets in a purchase [73–75]. It is a measurement
in association rule mining for assessing how likely the customers are going to purchase a set
of items together [73–75]. This measure finds the complementary between a set of items in a
purchase made by customer [73–75]. This study proposes a novel Borda count voting using
the concept of lift in association rule mining for ensemble classifiers.

The modified Borda count method with the Lift weighting mechanism is illustrated in
Algorithm 2.

The voting mechanism of the conventional Borda voting method involves the selection of
labels based on their posterior probabilities. The label with the highest posterior probability
is assigned to the new test data. The traditional ensemble models involve the application of
majority voting technique for the final classification. However, the drawback of the major-
ity voting is that it won’t consider the preferences and weightage choice of the classifier
while making the decision [76, 77]. The Borda count method rectifies this issue by using a
preferential voting mechanism where a weightage is given for every classifier’s choice.

The proposed approach improves the typical Borda count method by finding the measure
of association of the ensemble classifiers in making final prediction. It applies the concept of
lift in the weighting procedure of Borda voting. The Lift measures the complimentary ratio
between the likelihood posterior probability of predicting a test label ‘A’ using an ensemble
of classifiers from a set ‘S’ to the likelihood posterior probability of predicting the same test
label ‘A’ with the individual classifiers on the set ‘S’. Thus, the concept of Lift is able to
measure the association complimentary between a set of classifiers for predicting a label.

The equation for finding the final classifier using Borda count method for a new test data
is given in Eq. (2):

T estdataLabel = max(
n∑

i=1

k∑

j=1

Posteriorprobabili t ylabeli (Classi f ier j )) (2)

Equation (2) indicates that the test data are assigned with a label which is having the
maximum aggregate posterior probability. The aggregate posterior probability of a label is
the total sum of the posterior probability reported after executing with every classifier sep-
arately. Then, the label with the highest posterior probability is selected and assigned for
the given test data. In Eq. (2), Testdata_Label is the label assigned for a test data, Poste-
rior_probability_label is the Posterior probability assigned for a given label ‘j’, Classifier j
is the jth classifier considered.

The simple equation for finding the association between two purchasing items using Lift
is as follows:

Li f t(X/Y ) = P(X ∩ Y )/P(X) ∗ P(Y ) (3)

Let us consider X and Y are two items. Then, Lift(X/Y) is the Lift associated between
the two items, the numerator of Eq. (3) is the event of both X and Y are bought together,
denominator of Eq. (3) is the probability of happening of buyingX, and P(Y) is the probability
of buying of Y. Thus, Eq. (3) measures the complimentary ratio between the probability of
occurrence of bothX andY if bought together by the customer to the probability of occurrence
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Data: Pool of classifiers, Test dataset
Result: Final classification of a patient as HC or AD or MCI on the test dataset
/* 1. Initializing the size of pool of classifiers*/ ;
Initialize int size = Number of classifiers in the ensemble pool ;
/* 2. Using a string array pool of classifiers for storing the pool of classifiers */ ;
Str Pool of classifiers[size] = Pool of classifiers ;
/* 3. Initializing a variable i, j equal to zero for storing posterior probabilities */ ;
Initialize int i=j=0 ;
/* 4. Initializing a variable named label_size for storing the count of labels */ ;
Initialize int label_size = 3 ;
/* 5. Initialize the three labels ie, AD, MCI, HC */ ;
Initialize int label[3]=[AD:0, MCI:1, HC:2] ;
/* 6. This main loop assigns a label out of HC, MCI, AD for each test data dynamically */ ;
while not the end of Test dataset do

/* 6.1 Finding best set of ensemble classifiers using DES */ ;
New Set = Best set of classifiers from ensemble pool of classifiers for the given test data using
DES classifiers ;
size1 = length(New Set) ;
/* 6.2 Initializing a multidimensional array posterior probability for storing every pool of
classifier’s posterior probability for the three labels */ ;
Declare float posterior_probability[size1][label_size] ;
/* 6.2.1 Assigning the float posterior probability values of the selected classifiers */ ;
while i< size1 do

while j<label_size do
posterior_probability[i][j] = Posterior Probability of classifier i with respect to individual
label ′j′ ;
j = j+1 ;

end
i = i+1 ;

end
/* 6.3 Initializing variable for storing the sum of posterior probability of every classifier */ ;
Declare float sum_posterior[size1] ;
Initialize int U=1 ;
/* 6.4 This inner loop finds the label with the highest posterior probability and assigns to the test
data */ ;
while U<size1 do

Store the sum of posterior probability scores with respect to every label in sum_posterior[U] ;
U += 1

end
Initialize FinalLabel = Label with maximum posterior probability value ;
Return FinalLabel for given test data ;

end
Algorithm 1: Pseudocode for typical Borda count.

of buying two items separately by the customer. The higher value of Lift(X/Y) indicates there
is a strong association between the two items.

Taking inspiration from the concept of the Lift, a modified Lift formula is developed for
the voting mechanism of the Borda count. The modified Lift formula is given in Eq. (4):

Li f tnew(x1, x2, x3, ..xn/y)

= P(x1 ∩ x2 ∩ x3 ∩ ... ∩ xn/y)/(P(x1/y) ∗ P(x2/y) ∗ p(x3/y) ∗ ... ∗ p(xn/y)

(4)

In Eq. (4), the Lift_new(x1, x2, x3,..xn /y) is the Lift value associated when a set of
classifiers say x1, x2, x3,......, xn are used for classifying a label ‘y’. It is the ratio of the
posterior probability associated when all the classifiers are used classifying a label ‘y’ to
the product of individual posterior probability associated with every single classifier for
predicting the label ‘y’. Thus, the numerator in Eq. (4) is a measure of posterior probability
for predicting a label ‘y’ provided whole the classifiers are used. The denominator in Eq. (4)
is a measure of posterior probability for predicting a label ‘y’ provided if every classifier is
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Data: Pool of classifiers, Test dataset
Result: Final classification of a patient as HC or AD or MCI on the test dataset
/* 1. Initializing the size of pool of classifiers */ ; ;
Initialize int size = Number of classifiers in the ensemble pool ;
/* 2. Use a string array pool of classifiers for storing the pool of classifiers */ ;
str Pool of classifiers[size] = Pool of classifiers ;
/* 3. Initializing a variable i,j equal to zero for storing posterior probabilities */ ;
Initialize int i=j=0 ;
/* 4. Initializing the number of labels */ ;
Initialize int label_size = 3 ;
/* 5. Initialize the three labels ie, AD, MCI, HC */ ;
Initialize label[3]=[AD:0, MCI:1, HC:2] ;
/* 6. This main loop assigns a label out of HC, MCI, AD for each test data dynamically */ ;
while not the end of Test dataset do

New Set = Best set of classifiers from ensemble pool of classifiers for the given test data ;
size1 = length(New Set) ;
/* 6.1 Initializing a multidimensional array posterior probability for storing every pool of classifier’s
posterior probability for the three labels */ ;
Declare float posterior_probability[size1][label_size] ;
/* 6.2 Initializing the classifier pointer to zero. This variable is then used for traversing all the pool of
classifiers */ ;
Initialize classifier pointer = 0 ;
/* 6.3 Initially the posterior probability for every pool of classifiers are found out for AD, MCI, HC
categories. This inner loop is used for calculating the posterior probability for every classifier and
all the labels */ ;
while classifier pointer < size do

Initialize k=0 ;
while k<=label_size do

posterior_probability[classifier pointer][k] = Posterior Probability of classifier ‘classifier
pointer’ with respect to individual label ‘k’ ;
k+=1 ;

end
classifier pointer += 1 ;

end
/* 6.4 Initializing variable for storing the sum of posterior probability of every classifier */ ;
Initialize int m=1;
Declare Posterior_probability_pool_of_every_classifiers[3] ;
/* This inner loop finds the posterior probability for every label */ ;
while m<=label_size do

Initialize Posterior_probability_pool_of_every_classifiers[m]= Posterior Probability using every
classifier on label ‘m’ ;
m+=1 ;

end
Initialize int j=0 ;
/* 6.5 Declare a float variable for storing the lift value for every classifier and the label */ ;
Declare float Lift_label[size][label_size] ;
/* This inner loop finds the lift score for every classifiers and the corresponding labels */ ;
while j<label_size do

Initialize v=product=1 ;
while v<size do

Lift_label[v][j] = Posterior_probability_pool_of_every_classifiers[j] / (Product *
posterior_probability[v] ;
product = Product * posterior_probability[v] ;
v+=1;

end
j+=1 ;

end
/* 6.6 Declaring a variable for storing the sum of lift scores for a label. This inner loop assigns the
test data with the highest Lift value */ Initialize float sum_lift[size1] ;
Initialize U=1 ;
while U<size do

For given classifier, store the sum of lift scores with respect to every label in sum_lift[U] ;
end
Initialize FinalLabel = Label with maximum lift value ;
Return FinalLabel for given test data ;

end
Algorithm 2: Pseudocode for novel modified Borda count.
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used separately. Hence, the ratio of the numerator and denominator in Eq. (4) denotes the
association between the combination of classifiers and individual classifiers for predicting
the label ‘y’.

Equation 5 illustrates the label assigning for a new test data based on the typical Borda
count method. Equation 5 illustrates the label assigning for a new test data based on the
Lift_new method given in Equation 3.

Label(T estdata) = max((label1), (label2), ...(labeln)) (5)

Label(T estdata) = max(Li f tnew(label1), Li f tnew(label2), ...Li f tnew(labeln))

(6)

If there are ‘n’ labels, Eq. (5) suggests that the final label of the test data is the label with
the maximum Lift_new (see equation 4) value. The higher value of Lift_new for a label say
‘x’ indicates that the combination of the given set of classifiers have higher complementary
in predicting that label ‘x’. Thus, the complimentary score for the combination of classifiers
are considered for the final label assignment rather than considering the sum of posterior
probability of single classifiers of every label which is performed on the typical Borda count
method.

3.5.3 Pool of classifiers

Following classifiers are used in the ensemble models. They are:

• Random forest (RF) RF consists of a set of decision tree (DT) where each DT is a
combination of various random observations placed with replacement from the original
dataset. Moreover, random features are considered on every DT. The dynamic ensemble
models select the set of best performing DT’s and use it for testing with the unseen data
[78, 79].

• Bagged decision tree (BDT) BDT consists of a combination of DT’s where each DT
consists of a set of a random subset of both features and samples. The samples and
features of the DT’s in BDT is taken with replacement. The dynamic ensemble models
select the set of best performing DT from the BDT and use it for testing with the unseen
data [80, 81].

• Extra tree (ET) ET is a different version of BDT and RF in a way because rather than
selecting random subsets for each DT, the whole training dataset is utilized for creating
the DT in ET. The random subsets of the features are selected for each DT in the ET.
Moreover, the splitting points of every DT is selected randomly using this method [81,
97].

• Adaboost Adaboost is a feedback based DT method where an initial weightage is
assigned to every sample in the training set. If there are any misclassified samples in
the initial DT, the weights of the misclassified samples are adjusted and send back to
the consequent DT’s. The dynamic classifier select those combinations of DT’s that
maximizes and correctly classifies the given sample data [81].

• Rotation forest (rot-forest) Each DT in this method constitute both random subset of
samples and features. In addition, a Principal Component Analysis (PCA) is applied on
each feature set of every DT. Then, the final decision is taken on the principle of RF
[82–85].

• Multilayer Perceptrons (MLP): MLPs are examples of feed-forward neural networks
where the inputs fed into the input layer are shifted into the next layers using activation
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functions. The final results are then fed into the last final layer for prediction purposes.
Moreover, the error in the final layer is calculated using a loss function. The loss function
retraces and reinitializes the weights if the error goes below a low threshold [86, 87].
The bagging procedure is performed on the MLP and the dynamic ensemble model will
select those sets of MLP’s with greater performance.

• Support vector machine (SVM) SVM algorithms find a suitable hyperplane for classi-
fying AD, MCI, and HC patients. The optimal hyperplane is the one that can separate the
data points belonging to MCI, HC, and AD patients with greater separability [88, 89].
The best performing SVM’s are selected by the dynamic ensemble models for evaluating
the performance with the unseen test data.

• Hetero1Hetero1 pool of classifiers consists of a combination of heterogeneous classifiers
such as Naive Bayes (NB), K-nearest neighbors (KNN), K means algorithms. The Naive
Bayes classifier predicts the label for the test data on the basis of Bayesian probability
[91]. KNN algorithm finds out the majority label in a nearest neighborhood for the final
decision making process [90]. K means will cluster the given samples into three clusters
such as AD, MCI, and HC on the basis of the data [92, 93]. Then, a typical Borda
majority voting is applied on the prediction results of NB, KNN, and K means for the
final prediction of unseen test data.

• Stacked classifier Logistic Regression (LR) is applied as a meta-classifier to the hetero1
classifiers for final distinguishing of the AD, MCI, HC patients. The proposed modified
and novel Borda count method is applied onto the LR classifier as input for making the
final decision [94–96].
Figure 4 depicts the diagram for the modified Borda count voting method.

3.5.4 Evaluation metrics

The important terminologies of a confusion matrix (CM) for AD is as follows:

• True positives (TP) It is the count of the total number of predictions that correctly predict
the AD as AD itself.

• False positives (FP) It is the count of the total number of predictions that incorrectly
predicts the non-Alzheimer’s (MCI/HC) instances as AD.

• False negatives (FN) It is the count of the total number of predictions that incorrectly
predicted the AD as non-Alzheimer’s instances (MCI/HC).

• True negatives (TN) It is the count of the total number of predictions that correctly
identify non-Alzheimer’s (MCI/HC) instances as non-Alzheimer’s (MCI/HC) instances.

The above similar explanations can be given for MCI and HC patients.
The following evaluation metrics are measured from the CM for our experiments.

Balanced classification accuracy (BCA)
It is a measure that combines both the sensitivity and specificity of a classifier. It is a better

metric for evaluating the performance of an imbalanced dataset [98, 99]. Equation1 contains
the BCA for a class ‘i’ equation using sensitivity and specificity.

BCA = 1/2 ∗ ((T P/T P + FN ) + (T N/T N + FP)) (7)

BCA = 1/2 ∗ (sensi tivi t y + speci f ici t y) (8)

Sensitivity or true positive rate
It is the measure of the ability of a classifier to classify correctly a given diagnosis status

(MCI/HC/AD) of a patient if they have that diagnosis status. It is the ratio of TP to the sum
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Fig. 4 Diagram for the modified Borda count voting method
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Table 2 Count of AD, MCI, HC
patients in the training-validation
and testing set

Training-validation set AD 273

MCI 697

HC 418

Test set AD 69

MCI 175

HC 105

of TP and FN. Equation3 contains the sensitivity for a class ‘i’.

Sensi tivi t y = T P/(T P + FN ) (9)

Specificity
It is the ratio of TN to the sum of TN and FP. Equation4 contains the specificity for a class

‘i’.

Speci f ici t y = T N/(T N + FP) (10)

4 Experimental results and discussions

This section contains a detailed information about the experimental results and the discussion.

4.1 Implementation details

The experiments are performed on the ADNI-TADPOLE dataset. The dataset consists of
1737 patient’s data. The entire dataset is divided into training-validation and testing sets.
The 80% and 20% of the data are considered for the training-validation and testing sets,
respectively. A stratified 10-fold cross-validation strategy is used for hyper-parameter tuning
of the classifiers on the training-validation set. The stratified 10-fold cross-validation is a
better technique for maintaining equal proportion of training and validation set during cross-
validation stage for imbalanced datasets [100, 101]. The best combination of parameters
found from the hyper-parameter tuning is used for the respective models for evaluation with
the unseen test dataset.

Training-validation set using stratified 10-fold cross-validation technique The entire
training-validation set is divided into 10 equal folds of data.A stratified sampling is performed
on every fold of the training set inside the training-validation set for maintaining equal
proportion of the labels. The training-validation set consists of 1110 observations. These
data are then divided into 10 equal folds. Out of these 10 folds, nine folds are used for
training. In each of these nine folds, a stratified sampling is performed for maintaining equal
proportion of AD, MCI, and HC. The remaining one fold out of the ten folds are used as
a validation set. This process is repeated 10 times until every fold become a training and
validation set.

4.2 Hyper-parameter tuning results

The grid search cross-validation technique is used for the hyper-parameter tuning process on
the training-validation set. Grid search is one of themost commonly used technique for hyper-
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parameter fine-tuning for machine learning tasks [102, 103]. The best combination of hyper-
parameters of the classifiers that can maximize the overall BCA is selected for evaluation
with the unseen test data. BCA is a better evaluation metric for assessing the performance
of a multiclass classification and imbalanced dataset. It can indicate both the true positive
rate and true negative rate of the multiclassification [42]. The grid search cross-validation is
performed using the Python library sklearn.model_selection.GridSearchCV library.

The hyper-parameter fine-tuning results for the classifiers are as follows:

• The hyper-parameters considered for the tree-based classifiers such as RF, BDT, ET,
Adaboost, and Rot-Forest are the number of trees, and the maximum depth of the tree.
The Gini index is considered as the splitting criteria for all the tree-based classifiers.
The number of trees considered for the classifier while fine-tuning are [100, 1000, 2000,
3000, 4000, 5000, 6000]. The maximum depth of tree considered while fine-tuning are
[3, 5, 7, 9, 11, 13, 15].

• The highest BCA of 86% is reported for RF when the number of trees and maximum
depth are 3000, 9, respectively. The highest BCA of 87% is reported for BDT and ET
when the number of trees and the maximum depth is 2000, 9, respectively. The highest
BCA of 87% is reported for Adaboost when the number of trees is 6000 and maximum
depth is 9. Similarly, the highest BCA of 85% is reported Rot-Forest when the number of
trees is 3000 and the maximum depth is 7. Thus, these tree-based models are built upon
these values of the hyper-parameters and then evaluated with the unseen test data. The
sklearn.ensemble Python library is used for the implementation of all the homogeneous
tree classifiers.

• The grid search is performed on the SVM classifier for the hyper-parameters such as C
and Gamma. The possible values considered for C are [0.1, 1, 10, 100] and Gamma are
[1, 0.1, 0.01, 0.001, 0.0001]. The best optimal hyper-parameter values are found when
the C, Gamma value is 100, 0.0001, respectively, reported a BCA of 72%. The Python
Sklearn library is used for implementing the SVM classifier.

• The hyper-parameters fine-tuned for MLP are number of MLP estimators, batch size
and epoch size. The learning rate is fixed at a constant value of 0.01. The reason for
setting the learning rate as 0.01 is because it is found out to be a commonly used constant
rate for complex datasets [46, 47]. The possible values considered for batch size are
[200, 400, 600, 800, 1000], epoch size are [50, 100, 150, 200, 250, 300]. The best BCA
of 68% is found to be when the learning rate, number of estimators, batch size, epoch
size is 0.01, 400, 300, and 200, respectively, during hyper-parameter tuning. Python
sklearn.neural_network library is used for implementing the MLP architecture.

• As far as heterogeneous ensemble classifiers are considered, the value of ‘k’ in KNN and
DES algorithms are the same. The dynamic classifier selection algorithms are evaluated
using varying values of k such as [1,2,3,4,5,6,7,8,9]. The nearest neighbor value with the
highest BCA achieved during the training validation is selected for the testing phase as
well. For example, if the highest BCA is reported for KNORAE with k=7 for RF, then
the k=7 is considered for evaluating with the test data for KNORAE with RF as the input
pool of classifiers.

4.3 Feature selection using LASSO and XGBoost

Both the LASSO and XGBoost techniques are used separately in the study. The reason for
using LASSO and XGBoost is that both the methods are widely used by the researchers for
finding out the multivariate feature interactions in high dimensional datasets [104–108].
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Table 3 Feature importance values using LASSO

Features LASSO feature value Modality

Hippocampus volume 113.67 MRI

Middle temporal gyrus volume 97.55 MRI

Area of right pallidium 95.45 MRI

Area of right putamen 93.49 MRI

Area of right rostral middle frontal 90.13 MRI

Area of right thalamus 89.67 MRI

CMRgL of cingulum posterior 87.57 PET

CMRgL of cingulum posterior 80.23 PET

CMRgL of rectus gyrus 55.34 PET

CMRgL of temporal superior lobe 23.57 PET

CMRgL of temporal superior 19.79 PET

CMRgL of temporal superior 17.79 PET

CDRSB 11.9 Cognitive tests

FAQ 7.8 Cognitive tests

The following features are found to be important after using the LASSO feature selection:
Hippocampus Volume, Middle Temporal Gyrus Volume, Area of Right Pallidium, Area of
Right Putamen, Area of Right Rostral Middle Frontal, Area of Right Thalamus, CMRgL
of Cingulum Posterior, CMRgL of Cingulum Posterior, CMRgL of Rectus Gyrus, CMRgL
of Temporal Superior Lobe, CMRgL of Temporal Superior, CMRgL of Parietal Superior
Lobe, CDRSB, FAQ. The weight of the remaining features are found to be 0. Hence, they
are eliminated for the model building. Table 3 illustrates the LASSO feature weights for the
selected features.

The following features are found to be important after using theXGBoost feature selection:
Hippocampus Volume, Middle Temporal Gyrus Volume, Area of Right Pallidium, Area of
Right Putamen, Area of Right Rostral Middle Frontal, Area of Right Temporal Pole, Area
of Right Thalamus, Area of Right Transverse Temporal, CMRgL of Hippocampus Right,
CMRgL of Para Hippocampal, CMRgL of Cingulum Posterior, CMRgL of Angular Gyrus,
CMRgL of Frontal Middle Lobe, CMRgL of Temporal Superior, MMSE, CDRSB, FAQ,
Sex. The weight of remaining features are found to be less than 0. Hence, they are removed
from the model building process. Table 4 illustrates the XGBoost feature weights for the
selected features.

4.4 Performance evaluation on the unseen data using novel Borda count voting
method on DES algorithms:

Table 5 contains the comparison of BCA using various DES classifiers with the typical Borda
count method and the proposed modified Borda count method using the LASSO regression
feature selection. Table 6 contains the comparison of BCA using various DES classifiers
with the typical Borda count method and the proposed modified Borda count method using
the XGBoost feature selection. Table 7 contains the comparison of sensitivity using various
DES classifiers with the typical Borda count method and the proposed modified Borda count
method using the LASSO regression feature selection. Table 8 contains the comparison
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Table 4 Feature importance values using XGBoost

Features XGBoost feature value Modality

Hippocampus volume 8.83 MRI

Middle temporal gyrus volume 8.23 MRI

Area of right pallidium 7.12 MRI

Area of right putamen 6.45 MRI

Area of right rostral middle frontal 6.57 MRI

Area of right temporal pole 6.52 MRI

Area of right thalamus 6.45 MRI

Area of right transverse temporal 6.25 MRI

CMRgL of hippocampus right 5.95 PET

CMRgL of para hippocampal 5.89 PET

CMRgL of cingulum posterior 5.65 PET

CMRgL of angular gyrus 5.45 PET

CMRgL of frontal middle lobe 4.98 PET

CMRgL of temporal superior 4.51 PET

MMSE 3.78 Cognitive tests

CDRSB 3.25 Cognitive tests

FAQ 2.99 Cognitive tests

Sex 2.20 Demography

of sensitivity using various DES classifiers with the typical Borda count method and the
proposedmodifiedBorda countmethod using theXGBoost feature selection. Table 9 contains
the comparison of specificity using various DES classifiers with the typical Borda count
method and proposed modified Borda count method using the LASSO regression feature
selection. Table 10 contains the comparison of specificity using various DES classifiers with
the typical Borda count method and the proposed modified Borda count method using the
XGBoost feature selection.

The highest BCA of 84% is reported for Rot-Forest after applying the META-DES classi-
fier using the features selected with the LASSO technique (see table 5). The highest BCA of
86% is reported after applying the META-DES classifier on the RF (see Table 6). The BCA
using the proposed modified Borda count is either increased or equal to that of the typical
Borda count method in the majority of the cases using both the LASSO andXGBoost method
(see Tables 5, 6). In general, the range of increase of BCA is from 1 to 6% for most of the
ensemble classifiers using the DES algorithms with both the LASSO and XGBoost feature
selection methods. The BCA is also reduced using the proposed modified Borda count in
some cases. For some classifiers like Adaboost, the BCA using LASSO is reduced from 77
to 76% using the DES-KNN. Similarly, the BCA is reduced from 79 to 77% using KNORAE
with the Rot-Forest classifier with the LASSO method. The BCA is also reduced from 73 to
72% using META-DES classifier for SVM classifier with the LASSO method (see Tables 5,
6).

The highest sensitivity of 86% is reported after applying META-DES classifier on Rot-
Forest classifier using the features selected with the LASSO technique (see Table 7). The
range of sensitivity is increased from 1 to 11% for most of the ensemble classifiers using
both the LASSO and XGBoost method (see Tables 7, 8). For Adaboost, the sensitivity is
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Table 5 Comparison of BCA using the typical Borda count and the modified Borda count for LASSO on the
unseen test data using the ensemble classifiers

Classifier Method KNORAE KNORAU META-DES DES-KNN DESP KNOP KLD

RF Typical 77% 75% 80% 78% 74% 72% 73%

Proposed 78% 76% 82% 80% 74% 73% 75%

BDT Typical 78% 78% 81% 79% 75% 72% 72%

Proposed 78% 80% 83% 81% 75% 73% 73%

ET Typical 77% 77% 80% 77% 76% 69% 69%

Proposed 78% 79% 80% 77% 77% 70% 69%

Adaboost Typical 77% 75% 80% 77% 77% 69% 69%

Proposed 77% 75% 82% 76% 77% 71% 70%

Rot-Forest Typical 79% 78% 80% 78% 76% 70% 69%

Proposed 77% 80% 84% 80% 82% 79% 71%

DT Typical 69% 70% 69% 71% 69% 71% 69%

Proposed 70% 71% 72% 73% 69% 71% 72%

SVM’s Typical 71% 70% 73% 74% 69% 71% 69%

Proposed 71% 71% 72% 75% 70% 73% 70%

MLP’s Typical 66% 67% 68% 68% 70% 67% 69%

Proposed 69% 69% 68% 69% 70% 68% 69%

Hetero1 Typical 57% 58% 58% 59% 60% 61% 63%

Proposed 58% 59% 61% 60% 60% 62% 63%

Stacking Typical 60% 62% 60% 63% 60% 61% 62%

Proposed 60% 65% 61% 64% 60% 62% 63%

Bold values indicate the increase in BCA

decreased from 70 to 69% using ET for the KLDmethod after executing the LASSOmethod.
A similar result is also observed for Rot-Forest where the sensitivity is decreased from 80
to 78% with LASSO and KNORAE. The sensitivity is also reduced for SVM from 73 to
72% with LASSO and DES-KNN classifier. Further, it is also noted that there is an increase
in sensitivity from 1 to 11% with most of the ensemble classifiers for heterogeneous and
stacking classifiers (see Tables 7, 8).

The highest sensitivity of 88% is reported after applying META-DES on the RF classifier
using the XGBoost selected features (see table 8). A highest sensitivity of 88% is reported
after applying META-DES on the RF classifier with the proposed modified Borda Count
voting method. There is an observed range of increase in sensitivity from 1 to 9% using
the XGBoost selected features. The proposed voting method reported an increase in the
sensitivity for every pool of classifiers using the KNORAU classifier (see tables 7, 8).

The highest specificity of 83% is reported for META-DES using BDT classifier with the
features selected from LASSO technique after implementing the proposed approach. For
homogeneous tree based classifiers, there is an increase in the specificity by 9% for Rot-
Forest using KNOP algorithm with the proposed voting algorithm (see table 9). Following
results are also observed with the proposed voting algorithm: 1. There is an increase in the
specificity ofMLP, Hetero classifiers by 10%, 11%, respectively; 2. There is an improvement
of 10% in specificity using KNORAE classifier on the MLP. There is an improvement of
11% in specificity on the Hetero1 classifier using DESP classifier (see table 9).
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Table 6 Comparison of BCA using the typical Borda count and the modified Borda count for XGBoost and
the homogeneous ensemble classifiers on the unseen test data using the ensemble classifiers

Classifier Method KNORAE KNORAU META-DES DES-KNN DESP KNOP KLD

RF Typical 77% 73% 82% 79% 77% 73% 75%

Proposed 78% 77% 86% 82% 80% 75% 78%

BDT Typical 79% 80% 82% 79% 73% 73% 76%

Proposed 80% 82% 84% 83% 79% 79% 80%

ET Typical 79% 80% 82% 79% 79% 70% 70%

Proposed 80% 81% 83% 80% 80% 73% 73%

Adaboost Typical 78% 77% 82% 79% 80% 71% 71%

Proposed 80% 77% 84% 80% 80% 73% 72%

Rot-Forest Typical 79% 78% 80% 80% 79% 73% 71%

Proposed 79% 80% 82% 80% 82% 75% 74%

DT Typical 69% 70% 69% 71% 73% 74% 69%

Proposed 70% 71% 72% 73% 74% 75% 72%

SVM’s Typical 71% 70% 74% 75% 70% 74% 69%

Proposed 73% 74% 76% 77% 73% 75% 70%

MLP’s Typical 70% 72% 73% 71% 70% 70% 71%

Proposed 73% 74% 77% 72% 72% 73% 75%

Hetero1 Typical 58% 58% 58% 59% 60% 61% 63%

Proposed 59% 60% 61% 60% 64% 62% 63%

Stacking Typical 60% 62% 60% 64% 60% 64% 64%

Proposed 60% 65% 61% 67% 60% 63% 65%

Bold value indicates the increase in BCA

The highest specificity of 84% is reported after using RF and Adaboost on the META-
DES classifier with the proposed voting method. After using the proposed voting, there is an
increase in specificity of 7% on RF using the KNORAU classifier (see Table 10). Moreover,
it is also observed that there is also an increase in specificity of 7% on BDT using the DESP
classifier (see Table 10).

Overall, there is an increase in the BCA from 1 to 7% after applying the proposedmodified
Borda count voting method. For most of the ensemble classifiers using both the LASSO and
XGBoost method (see Tables 9, 10). However, the specificity is also reduced in some cases
using LASSO and an ensemble pool of classifiers such as Adaboost, rotation forest, decision
tree, SVM’s, MLP, and stacked classifiers. In general, the reduction of specificity is from 1
to 6% in all these cases (see Tables 9, 10).

The reason for an increase in the BCA, sensitivity, and specificity for most of the pool
of classifiers with DES algorithms after executing with the modified Borda count is because
it considers the association between the posterior probability of prediction of MCI, AD,
and HC labels when all the classifiers are used to the posterior probability if the classifiers
are used individually. Thus, the proposed modified Borda count method can increase the
classification performance for AD, MCI, and HC patients. Moreover, it is also noticed that
there is a decrease in the BCA, sensitivity, and specificity in some ensemble pool of classifiers
(seeTables 5, 6, 7, 8, 9, 10). This pinpoints the importance of redesigning themodifiedBorda
count equation in such a way that it can also incorporate the various classifier combination
associations. Another key observation is that the highest BCA is achieved by tree based
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Table 7 Comparison of sensitivity using the typical Borda count and the modified Borda count for LASSO
and the homogeneous ensemble classifiers on the unseen test data using the dynamic ensemble classifiers

Classifier Method KNORAE KNORAU META-DES DES-KNN DESP KNOP KLD

RF Typical 77% 73% 79% 78% 74% 74% 75%

Proposed 78% 75% 82% 80% 74% 75% 73%

BDT Typical 78% 78% 81% 79% 75% 72% 72%

Proposed 78% 80% 83% 81% 75% 73% 73%

ET Typical 77% 77% 82% 77% 76% 68% 70%

Proposed 78% 80% 82% 77% 79% 68% 69%

Adaboost Typical 77% 75% 82% 77% 77% 70% 70%

Proposed 77% 75% 84% 78% 77% 70% 70%

Rot-Forest Typical 80% 80% 80% 78% 76% 72% 70%

Proposed 78% 80% 86% 82% 82% 80% 73%

DT Typical 69% 70% 69% 71% 69% 71% 69%

Proposed 70% 71% 72% 73% 69% 71% 72%

SVM’s Typical 71% 70% 73% 74% 69% 71% 69%

Proposed 71% 71% 72% 75% 70% 73% 70%

MLP’s Typical 64% 67% 68% 64% 66% 64% 66%

Proposed 66% 66% 66% 72% 72% 72% 67%

Hetero1 Typical 54% 60% 56% 60% 67% 65% 64%

Proposed 60% 67% 65% 58% 56% 63% 58%

Stacking Typical 58% 66% 65% 66% 64% 65% 66%

Proposed 62% 63% 58% 57% 63% 65% 66%

Bold value indicates the increase in sensitivity

classifiers when compared to the MLP’s classifiers (see Tables 5, 6, 7, 8, 9, 10). This is a
positive factor for physicians as tree based classifiers are also one of the most interpretable
models.

4.5 Limitations and future works

The main limitations and future work of the proposed work are as follows:

• The study is conducted on the ADNI-TADPOLE dataset. However, we are planning to
conduct the study on various other global datasets belonging to various parts of the globe.

• We utilized the cross-sectional data of the patients (baseline visit) of patients for the
study. A study on the longitudinal data could extract many hidden insights for predicting
MCI and AD patients. The reason for considering the cross-sectional data is to create
an efficient ML model at the baseline visit itself so that the physicians need not wait for
consequent visit of a patient. However, it is a challenging task to implement an ensemble
model for longitudinal data. This is to be considered as a future work.

• We are also planning to implement advanced deep learning ensembles for extracting fea-
tures from unstructured data. This study do not extracts the feature frommedical images.
Hence, the future studies are focused on implementing deep learning for extracting fea-
tures from unstructured data.
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Table 8 Comparison of sensitivity using the typical Borda count and the modified Borda count for XGBoost
on the unseen test data using the dynamic ensemble classifiers

Classifier Method KNORAE KNORAU META-DES DES-KNN DESP KNOP KLD

RF Typical 78% 76% 84% 81% 79% 74% 75%

Proposed 78% 77% 88% 82% 82% 77% 80%

BDT Typical 81% 82% 82% 79% 75% 74% 76%

Proposed 80% 84% 84% 85% 80% 77% 80%

ET Typical 77% 80% 82% 80% 79% 72% 69%

Proposed 80% 81% 85% 80% 80% 75% 75%

Adaboost Typical 80% 77% 84% 79% 81% 72% 72%

Proposed 80% 76% 84% 77% 82% 75% 74%

Rot-Forest Typical 79% 78% 80% 80% 77% 75% 71%

Proposed 80% 80% 84% 81% 82% 78% 72%

DT Typical 71% 72% 68% 73% 73% 75% 71%

Proposed 70% 72% 74% 75% 75% 77% 68%

SVM’s Typical 71% 68% 75% 77% 72% 76% 72%

Proposed 74% 74% 77% 77% 73% 75% 69%

MLP’s Typical 72% 72% 75% 72% 70% 72% 73%

Proposed 73% 75% 77% 74% 73% 74% 73%

Hetero1 Typical 52% 56% 54% 56% 58% 63% 65%

Proposed 61% 63% 63% 57% 66% 56% 57%

Stacking Typical 65% 61% 66% 67% 57% 66% 62%

Proposed 60% 62% 64% 70% 63% 58% 64%

Bold value indicates the increase in sensitivity

Table 9 Comparison of specificity using the typical Borda count and the modified Borda count for LASSO
and the homogeneous ensemble classifiers on the unseen test data using the dynamic ensemble classifiers.
Bold value indicates the increase in specificity

Classifier Method KNORAE KNORAU META-DES DES-KNN DESP KNOP KLD

RF Typical 77% 77% 81% 77% 74% 70% 71%

Proposed 78% 74% 82% 80% 74% 71% 71%

BDT Typical 78% 78% 81% 79% 75% 72% 72%

Proposed 78% 80% 83% 81% 75% 73% 73%

ET Typical 77% 77% 79% 77% 76% 67% 68%

Proposed 78% 78% 78% 77% 76% 72% 69%

Adaboost Typical 77% 75% 78% 77% 77% 68% 68%

Proposed 77% 75% 80% 74% 76% 70% 70%

Rot-Forest Typical 81% 76% 80% 78% 76% 68% 72%

Proposed 76% 80% 82% 78% 82% 77% 69%

DT Typical 69% 70% 69% 71% 69% 71% 69%

Proposed 70% 71% 72% 73% 69% 71% 72%

SVM’s Typical 71% 70% 73% 74% 69% 71% 69%
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Table 9 continued

Classifier Method KNORAE KNORAU META-DES DES-KNN DESP KNOP KLD

Proposed 71% 71% 72% 75% 70% 73% 70%

MLP’s Typical 62% 67% 68% 60% 74% 70% 72%

Proposed 72% 72% 70% 66% 68% 66% 71%

Hetero1 Typical 60% 56% 54% 59% 53% 57% 62%

Proposed 62% 55% 57% 62% 64% 61% 68%

Stacking Typical 62% 58% 55% 60% 56% 57% 58%

Proposed 58% 67% 64% 67% 57% 59% 60%

Table 10 Comparison of specificity using the typical Borda count and the modified Borda count for XGBoost
on the unseen test data using the dynamic ensemble classifiers

Classifier Method KNORAE KNORAU META-DES DES-KNN DESP KNOP KLD

RF Typical 76% 70% 83% 77% 75% 73% 75%

Proposed 78% 77% 84% 82% 78% 73% 76%

BDT Typical 77% 78% 82% 79% 71% 72% 76%

Proposed 80% 80% 84% 81% 78% 76% 80%

ET Typical 81% 80% 82% 78% 79% 68% 68%

Proposed 80% 81% 81% 80% 80% 71% 71%

Adaboost Typical 76% 77% 80% 79% 79% 70% 70%

Proposed 80% 78% 84% 83% 78% 71% 70%

Rot-Forest Typical 79% 78% 80% 80% 81% 71% 71%

Proposed 78% 80% 80% 79% 82% 73% 70%

DT Typical 67% 68% 67% 69% 73% 73% 70%

Proposed 70% 70% 70% 71% 73% 73% 64%

SVM’s Typical 71% 72% 73% 73% 68% 72% 66%

Proposed 72% 74% 75% 77% 73% 75% 71%

MLP’s Typical 68% 72% 71% 70% 70% 68% 69%

Proposed 73% 74% 77% 67% 71% 73% 77%

Hetero1 Typical 64% 54% 62% 62% 62% 59% 61%

Proposed 57% 57% 59% 63% 62% 66% 67%

Stacking Typical 55% 60% 55% 60% 63% 62% 66%

Proposed 60% 68% 58% 64% 57% 52% 63%

Bold value indicates the increase in specificity

• We are planning to conduct a study using various combination of classifiers in the
ensemble models. The proposed algorithm only consider the set of all classifiers for
the prediction. This drawback will be rectified using an ensemble model that consider
various combination of classifiers on the final voting method.

5 Conclusion

This paper proposes a novel and modified version of the Borda count voting method
for improving the classification performance of AD, MCI, and HC patients. The ADNI-
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TADPOLE dataset is considered for the study. Our results suggest that the proposed method
has significantly improved the classification performance in terms of BCA, sensitivity, and
specificity for classifying AD, MCI, and HC patients when compared to the typical Borda
count method using various ensemble classifiers. The classification results suggest that the
application of novel methods in the voting of ensemble classifiers can increase the classi-
fier performance in distinguishing AD, MCI, and HC patients. Thus, this study pinpoints
the importance of novel methods in voting algorithms of dynamic ensemble classifiers. It
can also be applied to Alzheimer’s classification where a slight increase in the classification
performance can highly impact the physician’s decision-making. Moreover, we are planning
toward implementing the ensemble voting methods for feature selection as a future work for
distinguishing AD, MCI, and HC patients.

6 Appendix

Appendix contains the hyper-parameter tuning values for homogeneous tree classifiers like
RF, BDT, ET, Adaboost, Rot-Forest, SVM, MLP.

Refer Table 11 for the grid search hyper-parameter values for SVM. Refer Table 12 for
the grid search hyper-parameter values for RF, BDT, ET, Adaboost, and Rot-Forest. Refer
Table 13 for the grid search hyper-parameter values for bagged MLP.

Table 11 BCA using grid search
hyper-parameter tuning values
for RF, BDT, ET, Adaboost,
Rot-Forest

C Gamma BCA

0.1 1 66%

1 1 65%

10 1 67%

100 1 66%

0.1 0.1 66%

1 0.1 67%

10 0.1 66%

100 0.1 67%

0.1 0.01 67%

1 0.01 66%

10 0.01 67%

100 0.01 67%

0.1 0.001 66%

1 0.001 66%

10 0.001 66%

100 0.001 68%

0.1 0.0001 69%

1 0.0001 69%

10 0.0001 70%

100 0.0001 72%
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Table 12 BCA using grid search hyper-parameter tuning values for RF, BDT, ET, Adaboost, Rot-Forest

Number of trees Max depth RF BDT ET Adaboost Rot-Forest

100 3 77% 75% 81% 82% 77%

100 5 76% 76% 81% 82% 77%

100 7 74% 75% 82% 82% 77%

100 9 76% 75% 81% 83% 77%

100 11 77% 76% 82% 84% 78%

1000 3 77% 78% 79% 81% 79%

1000 5 77% 77% 82% 82% 82%

1000 7 78% 78% 81% 84% 84%

1000 9 79% 77% 85% 85% 83%

1000 11 80% 79% 82% 84% 83%

2000 3 80% 81% 83% 84% 82%

2000 5 80% 83% 82% 83% 82%

2000 7 81% 83% 83% 85% 81%

2000 9 86% 86% 86% 85% 83%

2000 11 78% 83% 83% 85% 83%

3000 3 79% 78% 79% 79% 84%

3000 5 81% 81% 84% 82% 84%

3000 7 82% 81% 85% 83% 85%

3000 9 86% 82% 84% 84% 83%

3000 11 85% 84% 85% 85% 83%

4000 3 84% 84% 84% 84% 81%

4000 5 85% 83% 86% 84% 78%

4000 7 84% 82% 86% 85% 79%

4000 9 84% 83% 84% 85% 82%

4000 11 82% 83% 86% 84% 80%

5000 3 83% 84% 86% 81% 80%

5000 5 85% 82% 86% 83% 81%

5000 7 84% 83% 85% 84% 79%

5000 9 85% 82% 84% 84% 82%

5000 11 84% 82% 85% 84% 81%

6000 3 83% 79% 84% 85% 79%

6000 5 82% 78% 85% 86% 79%

6000 7 82% 79% 86% 86% 80%

6000 9 83% 80% 86% 87% 81%

6000 11 84% 80% 86% 85% 79%
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Table 13 BCA for grid search
hyper-parameter tuning values
for MLP

No. of Estimators Batch size Epoch size BCA

200 50 50 55%

200 50 100 56%

200 50 150 57%

200 50 200 55%

200 100 50 56%

200 100 100 58%

200 100 150 58%

200 100 200 58%

200 150 50 57%

200 150 100 56%

200 150 150 58%

200 150 200 58%

200 200 50 59%

200 200 100 57%

200 200 150 56%

200 200 200 57%

200 250 50 57%

200 250 100 57%

200 250 150 56%

200 250 200 58%

200 300 50 58%

200 300 100 57%

200 300 150 58%

200 300 200 57%

200 50 50 55%

200 50 100 56%

200 50 150 57%

200 50 200 58%

200 100 50 57%

200 100 100 57%

200 100 150 58%

200 100 200 58%

400 150 50 59%

400 150 100 59%

400 150 150 58%

400 150 200 58%

400 200 50 58%

400 200 100 57%

400 200 150 58%

400 200 200 58%
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Table 13 continued No. of Estimators Batch size Epoch size BCA

400 250 50 57%

400 250 100 59%

400 250 150 59%

400 250 200 63%

400 300 50 64%

400 300 100 65%

400 300 150 66%

400 300 200 68%

600 200 50 65%

600 200 100 65%

600 200 150 66%

600 200 200 66%

600 250 50 65%

600 250 100 66%

600 250 150 66%

600 250 200 65%

600 300 50 66%

600 300 100 66%

600 300 150 65%

600 300 200 66%

800 50 50 65%

800 50 100 65%

800 50 150 66%

800 50 200 66%

800 100 50 65%

800 100 100 65%

800 100 150 64%

800 100 200 66%

800 150 50 66%

800 150 100 67%

800 150 150 67%

800 150 200 66%

800 200 50 65%

800 200 100 65%

800 200 150 65%

800 200 200 65%

800 250 50 66%
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Table 13 continued No. of Estimators Batch size Epoch size BCA

800 250 100 66%

800 250 150 65%

800 250 200 66%

800 300 50 66%

800 300 100 65%

800 300 150 65%

800 300 200 66%

1000 50 50 66%

1000 50 100 67%

1000 50 150 65%

1000 50 200 65%

1000 100 50 66%

1000 100 100 65%

1000 100 150 66%

1000 100 200 65%

1000 150 50 66%

1000 150 100 66%

1000 150 150 65%

1000 150 200 66%

1000 200 50 65%

1000 200 100 67%

1000 200 150 66%

1000 200 200 65%

1000 250 50 66%

1000 250 100 65%

1000 250 150 67%

1000 250 200 67%

1000 300 50 66%

1000 300 100 65%

1000 300 150 66%

1000 300 200 67%
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